
A Classic Look at
Systems Engineering by
Robert A. Frosch

From "Readings in Systems
Engineering", edited by Francis T.
Hoban and Wiliam M. Lawbaugh. NASA
SP-6102.

Editors'Note

Before his term as NASA
Administrator, Bob Frosch was
an assistant secretary of the
U.S. Navy in charge of
research, development, test
and evaluation of Navy
programs. In that capacity, he
delivered a controversial and
well remembered speech to the
IEEE Group on Aerospace and
Electronic Systems during IEEE's international
convention in New York on March 26, 1969. Edited
portions of that famous speech follow in an effort to
preserve what is now considered a classic formulation
of systems engineering as an art rather than a science.

In this presentation, I really will be discussing the
application of systems engineering to development, and
in particular to military systems development (with
which I am most familiar). However, from reading
various journals and newspapers, I suspect my remarks
are of more general applicability. I have said some of
these things before, but some bear repeating and some I
hope will spark new ideas.

I couple systems engineering, systems analysis and
Management (with a capital "M"), because in practice
they seem to be closely related terms, referring to the
same constellation of systematic practices and attitudes.

o We badly lack: systems engineering of systems
engineering; systems analysis of systems analysis.

o And, heaven knows, there is no: management of
Management.

o Therefore, I will now preach against home,
motherhood and apple pie.

To the charge that I am writing about bad systems
engineering, I can only say that I am taking a pragmatic
view: the thing is defined by what is done, not what is
said; and if what I am describing is bad systems

engineering, I can only say that I seldom see any other
kind.

What I want to do is discuss briefly a series of
antitheses (and perhaps an unbalanced question or two)
that pit the systems world against what I believe are
some aspects of the real world.

If I plot a graph versus time of what appears to be a
recent rising tide of costs, cost overruns, unsatisfactory
performance and unhappiness among engineers, I have
reason to worry. (If this trend continues, we may have
to debate whether the question "whither engineering?"
is spelled with one "h" or two.) If I plot on the same
graph versus time the rise in talk, directives, and use of
64 systems engineering," "systems analysis" and
"Management," I see high correlation between the two
graphs trouble versus time and the use of systems
engineering versus time. This does not prove causation,
but it suggests, at least, that the "new techniques" are
proving to be a poor substitute for real science and
engineering; they are, at the least, not doing what they
are advertised as doing, if they are indeed actually not
making things worse. It could be that things would be
even worse without these new techniques, but I would
like to ask some questions and suggest some reasons for
believing that systems engineering, systems analysis
and Management, as practiced, are likely to be part of
the problem, and indeed causative agents.

I believe that the fundamental difficulty is that we have
all become so entranced with technique that we think
entirely in terms of procedures, systems, milestone
charts, PERT diagrams, reliability systems,
configuration management, maintainability groups and
the other minor paper tools of the "systems engineer"
and manager. We have forgotten that someone must be
in control and must exercise personal management,
knowledge and understanding to create a system. As a
result, we have developments that follow all of the
rules, but fail.

I can best describe the spirit of what I have in mind by
thinking of a music student who writes a concerto by
consulting a checklist of the characteristics of the
concerto form, being careful to see that all of the canons
of the form are observed, but having no flair for the
subject, as opposed to someone who just knows roughly
what a concerto is like, but has a real feeling for music.
The results become obvious upon hearing them. The
prescription of technique cannot be a substitute for
talent and capability, but that is precisely how we have
tried to use technique.



PAPER VS. PEOPLE

My first antithesis pits the systems world of paper and
arrangements against the real world of people and
hardware. When paper appears in the real world version
of a system, it is generally only as an abstracted
commentary. For example, in a very basic sense it really
is of no consequence whether the documentation on a
weapons system is good, bad or nonexistent; that is only
a commentary on whether or why the people and the
hardware actually work when called upon, and a tool to
help them work. If the systems arrangements on paper
and the documentation can help to make the stuff work,
then they are of some use. If they are merely the formal
satisfaction of a requirement, they are only an
interference with engineering. Systems, even very large
systems, are not developed by the tools of systems
engineering, but only by the engineers using the tools.
In looking back at my experiences in development,
including watching a number of Navy developments
over the past few years, it seems quite clear that in most
cases where a system gets into trouble, a competent
manager knows all about the problem and is well on the
way to fixing it before any management systems ever
indicate that it is about to happen. This happens if for
no other reason than because the competent manager is
watching what is going on in great detail and perceives
it long before it flows through the paper system. That is
to say, personal contact is faster than form filling and
the U.S. mails. A project manager who spends much
time in a Management Information Center instead of
roving through the places where the work is being done
is always headed for catastrophe. The MIC can assist
the people who are not involved in the project toward
learning of after the fact problems, but that is roughly
all that it can do, and its value even for this purpose is
frequently questionable.

Blaming deficiencies in management systems for
problems that exist in real unknowns, or in the
deficiencies of people, is mere foolishness. In a poem
called "Bagpipe Music," by Louis MacNeice, the final
couplet is:

"The glass is falling hour by hour, the glass will fall
forever But if you break the bloody glass, you won't
hold up the weather.

LINEARITY VS. THE REAL WORLD

One of the key misassumptions in modern systems
engineering and systems analysis is that the total
problem can be, and frequently is, decomposed into
subproblems; the subproblems can be solved more or
less independently, and the total solution can be
synthesized by combination of the subsolutions, treating
the interactions of the parts as "interfaces." The real

world is, however, highly nonlinear, and unless real
attention is paid to this fact, the linear decomposition
treatment will fail catastrophically, because the
interaction terms may be as large as the subproblems
and not reducible to simple interfaces. The result may
well remain decomposed.

This criticism is frequently answered by the comment
that problems are unmanageable unless sliced up and,
therefore, the procedure is used even though we know it
may be seriously in error. This is the case of the man
who played in a poker game that he knew to be crooked,
because it was the only game in town; or the drunk who
looked for his ring under the street lamp even though he
had lost it a block away in the dark the light was better
under the street light. I have some difficulty seeing that
a bad analysis is really better than an informed
judgment, especially since faith in the analysis (and/or
the decomposed solution to the problem) is frequently,
nay, usually, used as a substitute for seeking or applying
any judgment at all. I am often faced with a result that
seems absurd, and can even produce a quick analysis
that at least makes it obvious that the solution is absurd,
but am then given the answer, "Well, that's what the
analysis showed."

Such a situation usually indicates room for deep
criticism, either of the way in which the problem was
divided up, or of peculiarities of the assumptions that
drive the problem in curious and unsuspected ways,
particularly through the unsuspected (by the systems
person) nonlinearities of the problem. It sometimes
appears that the only rational subdivision of the
problem is to fractionize the blame to the point where
approval is sought by default.

I would argue that careful attention to the parts of the
problem that do not seem to be easily decomposable
into semi independent parts might be one very good
guide to areas involving high risk, since these are likely
not to be amenable to our usual rules, procedures and
technologies, and hence probably will have to be
approached empirically.

SERIAL VS. ITERATIVE MODELS

Systems engineering techniques themselves contribute
to disaster because they are all paper techniques and
there are only two instead of N dimensions available.
What we end up displaying are linear sequential
measures of system progress.

The PERT diagram and the milestone chart are
excellent examples. These both essentially assume that
the progress of development and design consists of
doing step A, then step B, then step C, etc. Anyone who
has ever carried out a development or a design (as



opposed to setting up a management system for doing
so) is well aware of the fact that the real world proceeds
by a kind of feedback iterative process that looks more
like a helix than like a line. That is to say, you do A,
then B, then C, then you look at C and go back and
change part of A again, and that causes you to fiddle
with B and perhaps bring in a B prime that you bounce
against C, and then go back to A and then jump to D, so
that there has to be continual adjustment, going back
and forth so that the system is adjusted to itself and to
its end objectives as it changes and as the design or
development proceeds. Because it is difficult to predict
this process or to diagram it, or to predict its costs
precisely without using competent engineers, the
systems engineering procedures simply ignore the
iterative, feedback nature of the real world because the
process has been degraded to clerical reporting. To a
large extent, this tends to constrain project managers
from doing work in the real way toward doing it in a
way that fits with their management tools. This is
clearly nonsense.

As a specific example, doctrine says that one is to
consider the "ilities," that is, maintainability, reliability,
operability, etc., from the very beginning of the process.
This is a vast waste of time and effort. I do not mean
that one should not think about these things at the
beginning, but it is certainly ridiculous to have a
complete plan for the logistics of the maintenance of an
object that has not yet been designed. I have seen
overruns in expenditure and unnecessary effort
generated by the fact that the linear sequencing of
milestones had forced development of a complete
maintenance and reliability plan for what was no longer
the design, and had not been the design for three
months. The machinery forced everyone to grind on and
on because, after all, the maintenance and reliability
milestones could not be missed without disaster and
fear of cancellation of the project, even though the plan
being worked out had nothing whatever to do with the
hardware being designed.

In fact, the point at which to start serious work on
configuration control, maintainability and reliability
cannot be very well preplanned; it can be roughly
preplanned, but it must be adjusted to be at the point at
which the design means something and is likely to stay
still long enough so that the redesign for the "ilities"
will really make some sense. Judgment, not tools, is
what is required.

PREDICTION VS. PRODUCTION

This brings me to a related antithesis that I describe as
prediction versus production. We have come to a time
when meeting certain targets seems to have become
more important than producing a satisfactory system.

The question is not the development of a system that
performs well and was produced at a reasonable cost
and in a reasonable time, but rather replacement of this
sensible desire by the question, "Does the system
perform as predicted, did you produce it for the cost you
predicted, and on the schedule you predicted, and did
you do it in the way you predicted?" Consequently,
looking at what is actually happening in the
development has been replaced by measuring it against
a simplistic set of predicted milestones. Fulfillment of
prediction has been seriously proposed as the criterion
for judging system managers. It is certainly a minor
criterion. Fulfillment of a need when fielded continues
to be our real objective.

I know of a number of cases where the pressure on
prediction has been so great that the project managers
were forced to destroy the possibility of having a good
system because they were not allowed to adjust what
they were doing to the real world; otherwise, they
would have been so far off prediction in one or another
dimension that the project would have been canceled.
We fell between two stools. We had a system that was
only approximately what we wanted and the system
failed to meet the prediction. Similarly, we have not had
the sense to cancel something that met the predictions,
but was no damn good.

A QUESTION OF PREDICTABILITY

It is curious that those of us, sophisticated as systems
engineers, and having read history (in which no one
ever seems to anticipate what really happens), knowing
that the prediction time for random noise seen through a
bandpass filter is only about one over the bandwidth,
should yet seek predictability for the processes with a
wide bandwidth of unknown information. No one can
predict politics or economics; few of us predict what
happens in our own lives. Why then do we assume the
predictability of development of the unknown?

Should we expect development milestones to be met?
Presumably, the prior probability of meeting the
perfectly chosen milestone on time is distributed
randomly and symmetrically about the predicted time. If
the accomplishment is relatively simple, the distribution
is narrow and this is called "low risk;" if the
accomplishment is difficult, the distribution is wide and
this is called "high risk." However, all development
schedules assume success of each process. If we put
trouble contingency time allowances into every task, the
total contingency allowance would be unacceptably
large and the development unacceptably long. This
tends to bias the true risk distribution in such a way as
to move the peak to the late side. Thus, there is a
tendency for the "risk distribution" to peak after the
milestone. The contingency allowance should be



provided in an unpopular program element, "allowance
for stupidity and the unforeseen." Even so, it probably
would be eliminated by the efficient review process.

All I am saying is that we only assess the risk of the
predictable problems and that there is always a family
of unpredictable problems that make things take longer;
there are few ("oh, happy few!") cases of luck that make
things take less time. We should not expect milestones
to be reached, and they never (or hardly ever) are,
although milestones are needed to assure adequate
program pressure.

This question and my trial answer suggest a signal to
noise ratio approach to risk and error assessment in
development models. I have not tried to carry this
further; it is left as an exercise for the developer.

SYSTEMS IN SPACE VS. SYSTEMS IN
SPACETIME

My next antithesis I would label "systems in space"
versus "systems in spacetime." We talk about system
design and system choice in terms of ten year lifecycle
costs, but the assumption we tend to make is that the
system we are costing is a static object once it is
designed and produced. In a way, this is forced upon us
by the accountant's formalism of dividing costs into
investment and recurring costs. Any system managers
who say that they are designing their system in
spacetime, and that they propose to design it so as to
facilitate their ability to change it during the course of
the ten year life cycle, will promptly have their project
removed from under them because the doctrine says,
"This is terribly uneconomical;" furthermore, it says
that it is bad system design. I would simply like to note
here that real world history tells us that all systems are
changed frequently during their lifetime, if for no other
reason than that the real requirements and environments
and technologies for them change, often in ways that
make it stupid to leave them alone. In fact, it is almost
true that no military system is ever used for the precise
purpose for which it is designed. Consequently, it
makes sense to think about the system as something that
will have a history in time and that is likely to require
change, and to include some thought of this in the
design. Change, strangely, is the only truly predictable
attribute of the system. Perhaps I am merely going to be
enshrined in the next generation of systems engineering
doctrine with a special group in every project
organization called 44 changeability management." I
hope not. The question is not whether there will be
changes or not, but whether the change process will be
under conscious control. Do the developers know
"what" and "why" when they allow or make a change?
Pretending that no changes are allowable or desirable is
merely a way of losing control of the change process.

An example of the consequences of what I mean
follows. It is systems engineering doctrine that the
system should be matched throughout; that is to say, it
is regarded as poor practice to have, for example, high
reliability components matched with low reliability
components since system reliability will really be set by
the low reliability components whereas system cost is
likely to be set by the high reliability components.

This ignores the fact that since the system will have to
change in time it may be very sensible to build in high
reliability components in some parts of the system, even
though the technology does not provide them for other
parts of the system. During the course of the lifetime of
the system, there may be a high probability of bringing
the low reliability parts up to an equivalent reliability
with the high reliability parts for a reasonable cost. Thus
the system could be designed for great improvement in
reliability from the very beginning, whereas if
everything is matched to the lower reliability, the cost
of improvement becomes gigantic, because the changes
are extensive. In fact, the rule of thumb may not be
good engineering at all if the system is designed
considering change with time. We should design for
growth and a process of technological leapfrogging in
the system.

OPTIMIZATION VS. UNCERTAINTY

One of the fundamental tenets of systems engineering is
that the system should be optimized to its purpose. This
is dandy if the purpose is very specifically definable and
if it is very independent of scenario and enemy
behavior. If these requirements are not true, and they
almost never are for any military system of any great
sophistication, then optimization may merely be the
definition of which catastrophe you want to undergo.
My analogy is the matching of a narrowband filter to a
specific signal. This is an elegant engineering
procedure, provided you can depend on the signal to
stay put. If the enemy, for example, has a slight
adjustment in their frequency, then optimization in the
normal sense rapidly becomes nonsense. There is no
sense in optimizing the system beyond the accuracy of
the definition of requirements, and I never, or almost
never, see a definition of requirements with estimated
error limits.

This particular kind of catastrophe is most often
generated by the portion of systems engineering that the
economists like to call systems analysis. That is to say,
having chosen some scenario or problem defined in a
very specific way, the system prescription follows
optimization of this problem to the bitter and ridiculous
end. There is a vast reluctance to look at the difficulties
and the risks involved in assuming that the chosen
problem is the correct problem. I will feel much better



about the use of scenarios and prediction of warfare ten
years ahead for system choice and optimization if ever I
meet a person who can really predict a chess game, or
what will happen in the stock market tomorrow. This is
not to say the game should be ruled out just because the
results cannot be predicted, but rather to reinforce the
fact that it is a game and cannot be taken literally.

There is a procedure called sensitivity analysis, but I
have rarely seen it applied to the right parameters and
variations. It is usually too difficult to do so. One rarely
ever considers an error analysis, even when something
is known about the error distributions of the input
parameters.

A problem related to this is posed by the analysis of
multipurpose objects. A tremendous difficulty is
generated by the fact that the costs and characteristics
must be allocated to the appearance of the system in
several different scenarios. Consequently, these systems
must be single solutions to several systems engineering
requirements. Our usual way of dealing with this
problem is to bow three times in its direction and then
ignore it, because it is just too hard to solve. Solving it
requires solving the systems problems for all the
situations in which the multipurpose system appears,
then doing all the (nonlinear) interaction cases.

In addition, the cost allocation to the various uses must
be attacked. There is simply no methodology available
for really trying this and hence the problem is generally
ignored. This makes many of the analyses useless, but
that is generally ignored too. There is no sense in
pretending to solve problems by refusing to address
them realistically because they are too difficult, but we
go on playing that game.

OBJECTS VS. OBJECTIVES

Finally, we do not distinguish sufficiently between
objects and objectives. The working tools and most of
the life of systems engineering are spent trying to reach
an objective, the objective finally becoming an object. It
is important to keep this distinction in mind. The
trouble in procurement of a development is that
procurement procedures are designed to buy objects,
whereas in development there is no object until the end,
only an objective, and the two are not the same thing.

For example, what is a specification? A specification is
an abstract set intended to describe what is to be
produced, but of course it is only a portion of a total
description. It is a subset of points selected from a
continuous portion of an infinite multidimensional
space. The object itself and its total future history is the
only complete specification. Consequently, the idea of a
"complete" specification is an absurdity; we can only

produce a partial subset. In fact, it is possible (and we
have all seen it happen) for an object that meets the
subset of specification points to badly miss being a
sensible solution to the problem, because it departs from
the required reality between the specification subset
points. I hasten to add that sometimes even the object
itself, without regard to its future history, is not a
sufficient specification, because it does not contain the
details of the techniques used to produce it. Let the
specifier beware!

Having complained about all of this throughout this
article, what do I propose? The only thing I know that
works is to obtain a competent person and assistants,
and make sure they understand the problem not the
specifications of the problem, not the particular written
scenario, but what is really in the minds of those who
have a requirement to be solved. Then give them funds,
a good choice of managerial and systems engineering
tools, and let them work at the problem after reasonably
frequent conferences with those who have the
requirement.

In this way, the end object may become the best that
both parts of the system can produce and not merely the
solution to a paper problem, said solution having the
best paper properties to match the previous set of paper.
(Some paper is water soluble.) It might do well to bear
in mind the following closing thoughts:

o As we are now behaving, we are using up our best
people in filling out documentation for their superiors to
read, and most of the time no one is running the store.

o We have lost sight of the fact that engineering is an
art, not a technique; a technique is a tool. From time to
time I am briefed on the results of a systems analysis or
systems engineering job in a way that prompts me to
ask the questions: "That's fine, but is it a good system?
Do you like it? Is it harmonious? Is it an elegant
solution to a real problem?" For an answer I usually get
a blank stare and a facial expression that suggests I have
just said something really obscene.

We must bring the sense of art and excitement back into
engineering. Talent, competence, and enthusiasm are
qualities of people who can use tools; the lack of these
characteristics usually results in people who cannot
even be helped by techniques and tools. We can all do
better.


